Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors

J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology

RSAMD 2014

Golden, CO, Sept. 7-9, 2014

Acknowledgements:

F. Gao, J. Jimenez, D. Jin, J. Joh, T. Palacios, C. V. Thompson, Y. Wu ARL (DARPA-WBGS program), NRO, ONR (DRIFT-MURI program),

Outline

- 1. Motivation
- 2. Electrical and structural degradation of GaN HEMTs
- 3. Hypotheses for GaN HEMT degradation mechanisms
- 4. Paths for mitigation of GaN HEMT degradation

Breakthrough RF-µw-mmw power in GaN HEMTs

Micovic, MTT-S 2010

Micovic, Cornell

 P_{out} >40 W/mm, over 10X GaAs! Wu, DRC 2006

GaN HEMTs in the field

Counter-IED Systems

cellular base station Kawano, APMC 2005

GaN HEMT: Electrical reliability concerns

Critical voltage for degradation in DC step-stress experiments

I_D, R_D, and I_G start to degrade beyond *critical voltage* (V_{crit}) + increased trapping behavior – current collapse

Critical voltage: a universal phenomenon

Meneghini, IEDM 2011 Ivo, MR 2011

GaN HEMT on Si

GaN HEMT on Si GaN HEMT on sapphire

Demirtas, ROCS 2009 Marcon, IEDM 2010 Demirtas, ROCS 2009 Ma, Chin Phys B 2011

Structural degradation: cross section

8

Correlation between pit geometry and I_{Dmax} degradation

Pit depth and I_{Dmax} degradation correlate: \rightarrow both permanent degradation and current collapse (CC)

Structural degradation: planar view

OFF-state step-stress, V_{GS} =-7 V, T_{base} =150 °C Makaram, APL 2010

Unstressed $\frac{200 \text{ nm}}{100}$ V_{DG}=15 V $\frac{200 \text{ nm}}{100}$ V_{DG}=19 V $\frac{200 \text{ nm}}{1000}$ (V_{crit}) Drain **GAVE** Source V_{DG} =42 V $\frac{200 \text{ nm}}{200 \text{ nm}}$ V_{DG}=57 V $\frac{200 \text{ nm}}{200 \text{ nm}}$

- Continuous groove appears for V_{stress} < V_{crit}
- Deep pits formed along groove for $V_{stress} > V_{crit}$

Correlation between pit geometry and I_{Dmax} degradation

 I_{Dmax} degradation and pit cross-sectional area correlate

Planar degradation: the role of time

- Very fast groove formation (within 10 s)
- Delayed pit formation
- Pit density/size increase with time
- Good correlation between I_{Dmax} degradation and pit area

Time evolution of degradation for constant V_{stress} > V_{crit}

I_{Goff} and V_T degradation:

- fast $(<$ 10 ms)
- saturate after 10⁴ s

CC degradation:

- slower
- hint of saturation for long time

Permanent I_{Dmax} degradation:

- much slower
- does not saturate with time

Joh, IRPS 2011 $\qquad \qquad \qquad \text{13}$

The role of temperature in time evolution

Temperature acceleration of incubation time

- Different E_a for I_{Goff} , CC, I_{Dmax} reveal different degradation physics
- \cdot E_a for permanent I_{Dmax} degradation similar to life test data^{*}
- * Saunier, DRC 2007; Meneghesso, IJMWT 2010 15

DC semi-ON stress experiments

Stress conditions: $I_D=100$ mA/mm, V_{DS} =40 or 50 V Step-T experiments: 50<T_a<230°C

SEM

AFM $\left|\Delta\right|_{\rm Dmax}$ $\right|=4.5\%$ $\left|\Delta\right|_{\text{Dmax}}\right|=0.2\%$ $|\Delta I_{\text{Dmax}}| = 5.4\%$ $|\Delta I_{\rm Dmax}| = 4.7\%$ 0_{nm} -10 nm -20 nm $\left|\Delta\right|_{\text{Dmax}}\left| = 21.6\% \right|$ $|\Delta I_{\rm Dmax}| = 25.8\%$ 0.2 0.4 0.6 0.2 0.4 0.6 0.8 um 0.8 um

Prominent pits and trenches under gate edge on drain side

Wu, submitted to TED $_{16}$

Structural vs. electrical degradation

Trench/pit depth and width correlate with I_{Dmax} degradation

Wu, submitted to TED

Thermally activated degradation

- Pit/trench depth increase towards center of gate finger
	- \rightarrow self heating + thermally activated process
- Permanent I_{Dmax} degradation is thermally activated with E_a ~1.0 eV

Sequential I_G and I_D degradation

"Universal degradation" pattern:

- I_G degradation takes places first without I_D degradation
- I_D degradation takes place next without further I_G degradation

RF power degradation

SEM AFM

- RF power degradation pattern matches that of OFF-state DC stress
- But not always…

Joh, IEDM 2010 Joh, ROCS 2011 Joh, MR 2012

Summary of electrical and structural degradation

1. I_G degradation

- Fast
- Electric-field driven
- Little temperature sensitivity ($E_a \sim 0.2$ eV)
- Tends to saturate

Correlates with appearance of shallow *groove* and *small pits*

- On S and D side (bigger on D side)
- Groove/small pits appear for $V_{\text{stress}} < V_{\text{crit}}$

Summary of electrical and structural degradation

2. Current-collapse degradation (trapping)

- **Slower**
- Enhanced by temperature, electric field
- Tends to saturate for very long times

Correlates with *pit growth*:

- Pits randomly located on drain side
- Pits grow with V_{stress} , time and temperature
- Pits eventually merge

Dominant trap created by stress *already present in virgin sample*, $E_a = 0.56$ eV

Joh, IRPS 2011

 200 nm

Summary of electrical and structural degradation

3. I_{Dmax}, R_D degradation

- **Much slower**
- Temperature activated (E_a ~1 eV)
- **Electric-field driven**
- Does not saturate

Correlates with geometry of *pits* and *trench*

- Pits grow larger and merge into trench
- Trench grows deeper

Initial hypothesis: Inverse Piezoelectric Effect Mechanism

Strong piezoelectricity in AlGaN → $|V_{DG}| \uparrow \rightarrow$ tensile stress \uparrow \rightarrow crystallographic defects beyond *critical elastic energy*

defect state **ΔΦbi** $E_{\rm C}$ E_F S G G D AlGaN GaN 2DEG AlGaN \angle GaN Defects: Trap electrons \rightarrow n_s \downarrow \rightarrow R_D \uparrow , I_D \downarrow Strain relaxation \rightarrow I_D \downarrow Provide paths for I_G \rightarrow I_G \uparrow Joh, IEDM 2006 Joh, IEDM 2007 Joh, MR 2010b

Model for critical voltage

 V_{GS} =-5 V, V_{DS} =33 V 16nm 28% AlGaN

Joh, MR 2010 25

Predictions of Inverse Piezoelectric Effect model borne out by experiments

To enhance GaN HEMT reliability:

- Reduce AlN composition of AlGaN barrier (Jimenez, ESREF 2011)
- Thin down AlGaN barrier (Lee, EL 2005)
- Use thicker GaN cap (Ivo, IRPS 2009; Jimenez, ESREF 2011)
- Use InAlN barrier (Jimenez, ESREF 2011)
- Use AlGaN buffer (Joh, IEDM 2006; Ivo, MR 2011)
- Electric field management at drain end of gate (many)

Can't explain:

- Groove formation/ I_G degradation below critical voltage
- Presence of oxygen in groove/pit
- Role of atmosphere during stress
- Role of surface chemistry

I_G degradation for V_{stress} < V_{crit}

Meneghini, IEDM 2011

- Sudden irreversible increase in I_G, enhanced by V_{stress}
- No reported I_D degradation
- Preceded by onset of I_G noise
- Weakly temperature enhanced $(E_a=0.12 eV)$

I_G degradation correlates with **electroluminescence hot spots**

Zanoni, EDL 2009 Meneghini, IEDM 2011

- Gate current electrons produce EL in GaN substrate
- EL spots tend to merge into a continuous line

EL hot spots correlate with pits, pits are conducting

EL picture S (a) $20 \mu m$ G D 23.2 nm 3.0 nm (b) (c) S S 15.0 1.0 \downarrow G 10.0 -0.0 5.0 -0.0 -1.0 -5.0 -2.0 -10.0 -3.0 $2 \mu m$ $2 \mu m$ D -3.7 -16.6

AFM topography

Montes Bajo, APL 2012

Normal AFM

Conducting AFM

Shallow pits and groove responsible for I_G degradation

Pits/Groove increase mechanical stress

Pit/groove increases mechanical stress due to inverse piezoelectric effect at drain end of gate

- 2 nm x 3 nm groove increases mechanical stress in AlGaN from 4.6 GPa to 13 GPa
- Groove has little effect in current underneath
- Pit formation brings major loss of current

Ancona, JAP 2012

Oxygen inside pit

11732-CH1-d' Drain SiN Gate SiN LEES Feature in AlGaN Layer Conway, Mantech 2007

- O, Si, C found inside pit
- Anodization mechanism for pit formation? (Smith, ECST 2009)
- Electrical stress experiments under

Role of atmosphere on structural degradation

Off-state stress: $V_{ds} = 43$ V, $V_{gs} = -7$ V for 3000 s in dark at RT

Surface pitting significantly reduced in vacuum

Impact of Moisture on Surface Pitting

Off-state stress: V_{ds} = 43 V, V_{gs} = -7 V for 3000 s in dark at RT

> Stressed in watersaturated gas (Ar) $\Delta I_D = 28.8\%$

> > Stressed in dry gas (Ar) $\Delta I_D = 0.3\%$

Gao, TED 2014

- Moisture enhances surface pitting
- Results reproduced with dry/wet O_2 , N_2 , CO_2 and air

New hypothesis: AlGaN corrosion at edge of gate

Electrochemical cell formed at drain edge of gate

Reduction of water:

 $2H_2O + 2e^- \leftrightarrow 2OH^- + H_2$

• Anodic oxidation of AlGaN: 2Al_x Ga_{1-x}N + **6h⁺** ↔ 2xAl³⁺ + 2(1-x)Ga³⁺ +N₂ $2xA^{3+} + 2(1-x)Ga^{3+} + 6OH \leftrightarrow xAl_2O_3 + (1-x)Ga_2O_3 + 3H_2O$

• Complete redox electrochemical reaction:

2Al_x Ga_{1-x}N + 3H₂O ↔ x **Al₂O₃ + (1-x)Ga₂O₃ + N₂ + H₂**

Gao, TED 2014

Source of holes: trap-assisted tunneling

High electric field under gate edge \rightarrow Trap-assisted BTBT electron tunneling \rightarrow hole generation at AlGaN surface

Source of water: diffusion through SiN

• Water-vapor transmission rate (WVTR) through 100 nm of PECVD SiN:

$0.01 - 0.1$ g/m²/day

Gao's estimate of necessary WVTR to cause pits: $0.05 - 0.1$ g/m²/day

Tentative new model for GaN HEMT electrical degradation

- **Step 1**: formation of shallow pits/continuous groove in cap
- Pits/groove conducting: I_G↑

Step 2: growth of pits through anodic oxidation of AlGaN

- I_{Dmax} as electron concentration under gate edge reduced
- $CC₁$ due to new traps

Exponential dependence of tunneling current on electric field

"critical voltage" behavior

Paths for mitigation

- 1. Reduce hole production
	- Mitigate electric field at gate edge:
		- gate edge design
		- field plate design
	- Mitigate traps in AlGaN:
		- optimize growth conditions
		- reduce AIN composition
		- thin down AlGaN
		- mitigate mechanical stress

2. Reduce water around gate edge

- 1. Reduce SiN permeability
- 2. Mitigate trapped moisture during process
- 3. Hermetic package

Many questions…

• I_G degradation:

- Detailed physics of onset of pits/groove? Also of electrochemical nature?
- Why weak temperature activation?
- Why does I_G degradation saturate?
- Detailed mechanism for electrical conduction of pits?
- Trap formation:
	- Why traps introduced during degradation have similar dynamic signature as virgin traps?
- Mechanical stress:
	- Does mechanical stress and inverse piezoelectric effect still play role in degradation?
- Large variability in reliability:
	- Why? Also need effective screening process for virgin devices
- High-power RF stress
	- Is there a pulsed stress mode that faithfully emulates high-power RF stress?