Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors

J. A. del Alamo

Microsystems Technology Laboratories
Massachusetts Institute of Technology

RSAMD 2014 Golden, CO, Sept. 7-9, 2014

Acknowledgements:

F. Gao, J. Jimenez, D. Jin, J. Joh, T. Palacios, C. V. Thompson, Y. Wu ARL (DARPA-WBGS program), NRO, ONR (DRIFT-MURI program),

Outline

- 1. Motivation
- 2. Electrical and structural degradation of GaN HEMTs
- 3. Hypotheses for GaN HEMT degradation mechanisms
- 4. Paths for mitigation of GaN HEMT degradation

Breakthrough RF-µw-mmw power in GaN HEMTs

P_{out}>40 W/mm, over 10X GaAs! Wu, DRC 2006

Micovic, MTT-S 2010 Micovic, Cornell

Conf 2010 94-95 GHz MMIC PAs: —GaAs PHEMT 0.8 → InP HEMT → GaN HEMT Power (W) 0.6 0.4 0.2 0 1985 1990 1995 2000 2005 2010 Year

GaN HEMTs in the field

Counter-IED Systems (CREW)

200 W GaN HEMT for cellular base station Kawano, APMC 2005

100 mm GaN-on-SiC volume manufacturing Palmour, MTT-S 2010

GaN HEMT: Electrical reliability concerns

Critical voltage for degradation in DC step-stress experiments

I_D, R_D, and I_G start to degrade beyond *critical voltage* (V_{crit})

+ increased trapping behavior - current collapse

Critical voltage: a universal phenomenon

GaN HEMT on SiC (a)^{-0.4} EL1 I, I, (mA/mm) Point of degradation 1.6 2.0 Time (h)

Meneghini, IEDM 2011

Ivo, MR 2011

GaN HEMT on Si

Demirtas, ROCS 2009

GaN HEMT on sapphire

Ma, Chin Phys B 2011

Structural degradation: cross section

Correlation between pit geometry and I_{Dmax} degradation

Pit depth and I_{Dmax} degradation correlate:

→ both permanent degradation and current collapse (CC)

Structural degradation: planar view

OFF-state step-stress, V_{GS}=-7 V, T_{base}=150 °C

Makaram, APL 2010

- Continuous groove appears for V_{stress}<V_{crit}
- Deep pits formed along groove for V_{stress}>V_{crit}

Correlation between pit geometry and I_{Dmax} degradation

I_{Dmax} degradation and pit cross-sectional area correlate

Planar degradation: the role of time

$$V_{DS}=0$$
, $V_{GS}=-40$ V, $T_{base}=150$ °C

Joh, IWN 2010

10s

 G
 A
 T
 E

0.5 μm

- Very fast groove formation (within 10 s)
- Delayed pit formation
- Pit density/size increase with time
- Good correlation between I_{Dmax} degradation and pit area

Time evolution of degradation for constant $V_{\text{stress}} > V_{\text{crit}}$

I_{Goff} and V_T degradation:

- fast (<10 ms)
- saturate after 10⁴ s

CC degradation:

- slower
- hint of saturation for long time

Permanent I_{Dmax} degradation:

- much slower
- does not saturate with time

Joh, IRPS 2011

The role of temperature in time evolution

0 <u>4</u>

10⁻²

10⁰

Stress Time (s)

10²

10⁴

10⁶

- I_G: weak T dependence
- CC, I_{Dmax}: T activated

Joh, IRPS 2011

Temperature acceleration of incubation time

- Different E_a for I_{Goff}, CC, I_{Dmax} reveal different degradation physics
- E_a for permanent I_{Dmax} degradation similar to life test data*

DC semi-ON stress experiments

Stress conditions:

 $I_D=100 \text{ mA/mm},$

V_{DS}=40 or 50 V

Step-T experiments: $50 < T_a < 230$ °C

SEM

Prominent pits and trenches under gate edge on drain side

Structural vs. electrical degradation

Trench/pit depth and width correlate with I_{Dmax} degradation

Thermally activated degradation

- Pit/trench depth increase towards center of gate finger
 - → self heating + thermally activated process
- Permanent I_{Dmax} degradation is thermally activated with E_a~1.0 eV

Sequential I_G and I_D degradation

Stress conditions: $I_D=100 \text{ mA/mm}$, $V_{DS}=40 \text{ or } 50 \text{ V}$ Step-Temperature: $50 < T_a < 230^{\circ}\text{C}$

Wu, ROCS 2014

"Universal degradation" pattern:

- I_G degradation takes places first without I_D degradation
- I_D degradation takes place next without further I_G degradation

RF power degradation

	HV OFF-state DC	RF power
l _{Dmax}	\downarrow beyond $V_{ m crit}$	↓ beyond P _{in-crit}
R_{D}	↑ beyond V _{crit}	↑ beyond P _{in-crit}
R_{s}	small increase	small increase
I _{Goff}	↑ beyond V _{crit}	↑ beyond P _{in-crit}
Current Collapse	\uparrow beyond V_{crit}	↑ beyond P _{in-crit}
Permanent I _{Dmax}	\downarrow beyond $V_{ m crit}$	↓ beyond P _{in-crit}
Pits under drain end of gate	Yes	Yes
Pits under source end of gate	No	No

→ Gate

←Source Drain→

500 nm

SEM

- RF power degradation pattern matches that of OFF-state DC stress
- But not always...

Joh, IEDM 2010 Joh, ROCS 2011 Joh, MR 2012

Summary of electrical and structural degradation

1. I_G degradation

- Fast
- Electric-field driven
- Little temperature sensitivity (E_a~0.2 eV)
- Tends to saturate

Correlates with appearance of shallow groove and small pits

- On S and D side (bigger on D side)
- Groove/small pits appear for V_{stress} < V_{crit}

Summary of electrical and structural degradation

2. Current-collapse degradation (trapping)

- Slower
- Enhanced by temperature, electric field
- Tends to saturate for very long times

Correlates with pit growth:

- Pits randomly located on drain side
- Pits grow with V_{stress}, time and temperature
- Pits eventually merge

Dominant trap created by stress already present in virgin sample, E_a=0.56 eV

Joh, IRPS 2011

Summary of electrical and structural degradation

3. I_{Dmax}, R_D degradation

- Much slower
- Temperature activated (E_a~1 eV)
- Electric-field driven
- Does not saturate

Correlates with geometry of pits and trench

- Pits grow larger and merge into trench
- Trench grows deeper

Initial hypothesis: Inverse Piezoelectric Effect Mechanism

Strong piezoelectricity in AlGaN

- $\rightarrow |V_{DG}| \uparrow \rightarrow \text{tensile stress} \uparrow$
- → crystallographic defects beyond critical elastic energy

Defects:

Trap electrons

$$\rightarrow$$
 n_s \downarrow \rightarrow R_D \uparrow , I_D \downarrow

Strain relaxation

$$\rightarrow I_D \downarrow$$

Provide paths for I_G

$$\rightarrow I_G \uparrow$$

Model for critical voltage

 V_{GS} =-5 V, V_{DS} =33 V 16nm 28% AlGaN

<Vertical Electric Field>

<Elastic Energy Density>

$$T_{1} = \underbrace{(C_{11} + C_{12} - 2\frac{C_{13}^{2}}{C_{33}})S_{10}}_{+} + \underbrace{(\frac{C_{13}e_{33}}{C_{33}} - e_{31})E_{3}}_{+}$$

Mismatch stress

Inverse piezoelectric stress

$$W = \frac{C_{33}}{C_{11}C_{33} - 2C_{13}^{2} + C_{12}C_{33}} T_{1}^{2}$$

$$\propto (T_{10} + aE_{3})^{2}$$

Predictions of Inverse Piezoelectric Effect model borne out by experiments

To enhance GaN HEMT reliability:

- Reduce AIN composition of AIGaN barrier (Jimenez, ESREF 2011)
- Thin down AlGaN barrier (Lee, EL 2005)
- Use thicker GaN cap (Ivo, IRPS 2009; Jimenez, ESREF 2011)
- Use InAIN barrier (Jimenez, ESREF 2011)
- Use AlGaN buffer (Joh, IEDM 2006; Ivo, MR 2011)
- Electric field management at drain end of gate (many)

Can't explain:

- Groove formation/I_G degradation below critical voltage
- Presence of oxygen in groove/pit
- Role of atmosphere during stress
- Role of surface chemistry

I_G degradation for $V_{\text{stress}} < V_{\text{crit}}$

Meneghini, IEDM 2011

- Sudden irreversible increase in I_G, enhanced by V_{stress}
- No reported I_D degradation
- Preceded by onset of I_G noise
- Weakly temperature enhanced (E_a=0.12 eV)

I_G degradation correlates with electroluminescence hot spots

Zanoni, EDL 2009 Meneghini, IEDM 2011

- Gate current electrons produce EL in GaN substrate
- EL spots tend to merge into a continuous line

EL hot spots correlate with pits, pits are conducting

AFM topography

Montes Bajo, APL 2012

Normal AFM

Conducting AFM

Shallow pits and groove responsible for I_G degradation

Pits/Groove increase mechanical stress

Pit/groove increases mechanical stress due to inverse piezoelectric effect at drain end of gate

- 2 nm x 3 nm groove increases mechanical stress in AlGaN from 4.6 GPa to 13 GPa
- Groove has little effect in current underneath
- Pit formation brings major loss of current

Ancona, JAP 2012

Oxygen inside pit

Park, MR 2009

- O, Si, C found inside pit
- Anodization mechanism for pit formation? (Smith, ECST 2009)
- Electrical stress experiments under N₂ inconclusive

Role of atmosphere on structural degradation

Off-state stress: $V_{ds} = 43 \text{ V}$, $V_{gs} = -7 \text{ V}$ for 3000 s in dark at RT

Stressed in ambient air $\Delta I_D = 5.0\%$ Drain Edge of the Gate (Removed) Source Edge of the Gate

te 200 nm

PtlAu 10 nm Gate 5iNx

TEM Cross Section

PtlAu Gate 3 nm AlGaN AFM Depth Profile

Drain Edge of the Gate

Z[nm]
0.0
-2.5
-5.0
-7.5
-10.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0
X[μm]

Stressed in vacuum of 10^{-7} Torr $\Delta I_D = 0.5\%$

SEM Top View

Gao, TED 2014

Surface pitting significantly reduced in vacuum

Impact of Moisture on Surface Pitting

Off-state stress:

 $V_{ds} = 43 \text{ V}, V_{gs} = -7 \text{ V}$ for 3000 s in dark at RT

Stressed in watersaturated gas (Ar) $\Delta I_D=28.8\%$

Stressed in dry gas (Ar) $\Delta I_D = 0.3\%$

Gao, TED 2014

SEM Top View

Drain Edge of the Gate

Gate (Removed)

Source Edge of the Gate

200 nm

TEM Cross Section

- Moisture enhances surface pitting
- Results reproduced with dry/wet O₂, N₂, CO₂ and air

New hypothesis: AlGaN corrosion at edge of gate

Electrochemical cell formed at drain edge of gate

Reduction of water:

$$2H_2O + 2e^- \leftrightarrow 2OH^- + H_2$$

Anodic oxidation of AlGaN:

$$2AI_x Ga_{1-x}N + 6h^+ \leftrightarrow 2xAI^{3+} + 2(1-x)Ga^{3+} + N_2$$

 $2xAI^{3+} + 2(1-x)Ga^{3+} + 6OH^- \leftrightarrow xAI_2O_3 + (1-x)Ga_2O_3 + 3H_2O_3$

Complete redox electrochemical reaction:

$$2AI_x Ga_{1-x}N + 3H_2O \leftrightarrow xAI_2O_3 + (1-x)Ga_2O_3 + N_2 + H_2$$

10 nm

Gate

(Cathode)

AlGaN

(Anode)

Source of holes: trap-assisted tunneling

High electric field under gate edge

- → Trap-assisted BTBT electron tunneling
- → hole generation at AlGaN surface

Source of water: diffusion through SiN

 Water-vapor transmission rate (WVTR) through 100 nm of PECVD SiN:

$$0.01 \sim 0.1 \text{ g/m}^2/\text{day}$$

Gao's estimate of necessary WVTR to cause pits:

 $0.05 \sim 0.1 \text{ g/m}^2/\text{day}$

Tentative new model for GaN HEMT electrical degradation

Step 1: formation of shallow pits/continuous groove in cap

Pits/groove conducting: I_G↑

Step 2: growth of pits through anodic oxidation of AlGaN

I_{Dmax}↓ as electron concentration under gate edge reduced

CC↑ due to new traps

Exponential dependence of tunneling current on electric field

→ "critical voltage" behavior

Paths for mitigation

1. Reduce hole production

- Mitigate electric field at gate edge:
 - gate edge design
 - field plate design
- Mitigate traps in AlGaN:
 - optimize growth conditions
 - reduce AIN composition
 - thin down AlGaN
 - mitigate mechanical stress

2. Reduce water around gate edge

- Reduce SiN permeability
- 2. Mitigate trapped moisture during process
- 3. Hermetic package

Many questions...

I_G degradation:

- Detailed physics of onset of pits/groove? Also of electrochemical nature?
- Why weak temperature activation?
- Why does I_G degradation saturate?
- Detailed mechanism for electrical conduction of pits?

Trap formation:

— Why traps introduced during degradation have similar dynamic signature as virgin traps?

Mechanical stress:

 Does mechanical stress and inverse piezoelectric effect still play role in degradation?

Large variability in reliability:

Why? Also need effective screening process for virgin devices

High-power RF stress

— Is there a pulsed stress mode that faithfully emulates high-power RF stress?